Sheet metal fabrication is a handy set of manufacturing processes used to create parts from flat pieces of metal. Sheet metal comes in a range of materials and thicknesses, and can be used to create parts like appliances, enclosures, brackets, panels and chassis.
For those new to sheet metal fabrication, the process can seem daunting. Unlike versatile processes such as 3D printing and CNC machining, sheet metal fabrication is dictated by fairly strict design conventions. Sheet metal must be bent and cut in particular ways, and is only suitable for certain parts and products.
As such, it is important to learn some basic principles of sheet metal fabrication before embarking upon a project. Courtesy of rapid prototyping specialist 3ERP, this guide offers five simple tips to improve Sheet Metal Parts, turning ordinary designs into professional-quality sheet metal products.
What is sheet metal fabrication?
Sheet metal fabrication is a set of manufacturing processes that share one common trait: they all use sheet metal — as opposed to blocks, powder or molten metal — as feedstock. Different machines form the sheet metal in different ways: some make holes or incisions in the sheet metal; others bend, stamp or spin the metal to turn it into various shapes.
Using sheet metal fabrication, engineers can create durable, low-cost parts from a wide variety of metals. These stamping parts can be used across a range of industries, from aerospace to medicine to robotics.
The sheet metal used in the manufacturing process is usually between 0.006 and 0.25 inches (0.015 and 0.635 centimeters) thick, with the chosen size dependent on the given material and end-use of the part.
Improving sheet metal parts
Sheet metal fabrication is unique amongst the various manufacturing processes because its feedstock is unlike any other. For this reason, it can be difficult to design sheet metal parts when one is used to designing parts for machining, molding and other common manufacturing processes.
While the best way to ensure high-quality sheet metal parts is to consult and utilize a sheet metal specialist like 3ERP, it is also advantageous to follow certain design principles from the outset. By observing the following five tips, designers can create sheet metal parts that are strong, easy to fabricate and resistant to breakage.
Aluminum casting is a method for producing high tolerance and high-quality casting parts by inserting molten aluminum into a precisely designed and precision-engineered die, mold, or form. It is an efficient process for the production of complex, intricate, detailed parts that exactly match the specifications of the original design.
A positive benefit of aluminum casting parts is the layer of aluminum oxide that forms immediately after the part is removed from the mold, which provides a wall of protection against corrosion and rust.
Thanks to a wide range of machines and materials, CNC machining is capable of creating a vast array of professional parts for use in many industries. However, engineers must be careful to design parts in a way that suits the manufacturing process.
Considering the possibilities and limitations of the CNC machine — whether it’s a mill, a lathe or a high-end 5-axis machining center — leads to better machining parts, even if compromises have to be reached. A part is both enabled and constrained by its manufacturing process.
With that in mind, designing for manufacturability, by following certain design principles, ensures that parts will come out in the best way possible, will not break during machining, will not damage the machine itself, and will be fabricated in an efficient and cost-effective manner.
For those new to sheet metal fabrication, the process can seem daunting. Unlike versatile processes such as 3D printing and CNC machining, sheet metal fabrication is dictated by fairly strict design conventions. Sheet metal must be bent and cut in particular ways, and is only suitable for certain parts and products.
As such, it is important to learn some basic principles of sheet metal fabrication before embarking upon a project. Courtesy of rapid prototyping specialist 3ERP, this guide offers five simple tips to improve Sheet Metal Parts, turning ordinary designs into professional-quality sheet metal products.
What is sheet metal fabrication?
Sheet metal fabrication is a set of manufacturing processes that share one common trait: they all use sheet metal — as opposed to blocks, powder or molten metal — as feedstock. Different machines form the sheet metal in different ways: some make holes or incisions in the sheet metal; others bend, stamp or spin the metal to turn it into various shapes.
Using sheet metal fabrication, engineers can create durable, low-cost parts from a wide variety of metals. These stamping parts can be used across a range of industries, from aerospace to medicine to robotics.
The sheet metal used in the manufacturing process is usually between 0.006 and 0.25 inches (0.015 and 0.635 centimeters) thick, with the chosen size dependent on the given material and end-use of the part.
Improving sheet metal parts
Sheet metal fabrication is unique amongst the various manufacturing processes because its feedstock is unlike any other. For this reason, it can be difficult to design sheet metal parts when one is used to designing parts for machining, molding and other common manufacturing processes.
While the best way to ensure high-quality sheet metal parts is to consult and utilize a sheet metal specialist like 3ERP, it is also advantageous to follow certain design principles from the outset. By observing the following five tips, designers can create sheet metal parts that are strong, easy to fabricate and resistant to breakage.
Aluminum casting is a method for producing high tolerance and high-quality casting parts by inserting molten aluminum into a precisely designed and precision-engineered die, mold, or form. It is an efficient process for the production of complex, intricate, detailed parts that exactly match the specifications of the original design.
A positive benefit of aluminum casting parts is the layer of aluminum oxide that forms immediately after the part is removed from the mold, which provides a wall of protection against corrosion and rust.
Thanks to a wide range of machines and materials, CNC machining is capable of creating a vast array of professional parts for use in many industries. However, engineers must be careful to design parts in a way that suits the manufacturing process.
Considering the possibilities and limitations of the CNC machine — whether it’s a mill, a lathe or a high-end 5-axis machining center — leads to better machining parts, even if compromises have to be reached. A part is both enabled and constrained by its manufacturing process.
With that in mind, designing for manufacturability, by following certain design principles, ensures that parts will come out in the best way possible, will not break during machining, will not damage the machine itself, and will be fabricated in an efficient and cost-effective manner.